
Roracle: Enabling Lookahead Routing for Scalable
Traffic Engineering with Supervised Learning

Minghao Ye†, Junjie Zhang‡, Zehua Guo§*, H. Jonathan Chao†
†New York University ‡Fortinet, Inc. §Beijing Institute of Technology

Email: {minghao.ye, junjie.zhang, chao}@nyu.edu, guolizihao@hotmail.com

Abstract—Traditional Traffic Engineering (TE) usually bal-
ances the load on network links by formulating and solving a
routing optimization problem based on measured Traffic Matri-
ces (TMs). Given that traffic demands could change unexpectedly
and significantly in realistic scenarios, routing strategies opti-
mized based on currently measured TMs might not work well in
future traffic scenarios. To compensate for the mismatch between
stale routing decisions and future TMs, network operators may
perform routing updates more frequently, which could introduce
significant network disturbance and service disruption. Moreover,
given the high routing computation overhead of TE optimization
in today’s large-scale networks, routing updates could experience
severe delay and thus cannot accommodate future traffic changes
in time. To address these challenges, we propose Roracle, a
scalable learning-based TE that quickly predicts a good rout-
ing strategy for a long sequence of future TMs, while the
learning process is guided by the optimal solutions of Linear
Programming (LP) problems using Supervised Learning (SL). We
design a scalable Graph Neural Network (GNN) architecture that
greatly facilitates training and inference processes to accelerate
TE in large networks. Extensive simulation results on real-
world network topologies and traffic traces show that Roracle
outperforms existing TE solutions by up to 36% in terms of
worst-case performance under future unknown traffic scenarios.
Additionally, Roracle achieves good scalability by providing at
least 71× speedup over the most efficient baseline method in
large-scale networks.

I. INTRODUCTION

Traffic Engineering (TE) is an efficient operation that en-
ables network operators to optimize network performance and
resource utilization by configuring the routing across their
backbone networks [1], [2]. To minimize network congestion
probability, traditional TE [3]–[8] usually balances the load on
network links by formulating and solving a routing optimiza-
tion problem with a specific objective, such as minimizing the
Maximum Link Utilization (MLU).

For TE purposes, network operators can periodically mea-
sure a Traffic Matrix (TM) by sampling traffic volume over
a past time interval. TE usually takes a measured TM as
the input and operates periodically, e.g., every 5 minutes, to
optimize and update routing. For example, a TM is measured
at t = 5 to record the traffic volume for t ∈ (0, 5]. TE
can compute an updated routing based on the measured TM,
and then apply the routing for t ∈ (5, 10]. However, the
traffic demands among nodes could change unexpectedly and

* Corresponding author.

significantly in realistic scenarios. As a result, the routing,
which is optimized based on the currently measured TM,
might not work well for the traffic demands in the future period
and potentially introduce routing performance degradation.

To maintain good network performance, network operators
may want to compensate for the mismatch between stale
routing strategies and future TMs by updating the routing fre-
quently. However, it could introduce two critical issues. First,
frequent routing updates may introduce significant network
disturbance and service disruption [9], [10]. A recent study
[10] has shown that frequent routing updates would result
in severe Quality of Service (QoS) degradation in the AWS
network. This is because routing updates could temporarily
affect many TCP flows’ normal operation with packet loss and
reordering issues, which in turn increase the flow completion
time and degrade the QoS. Second, frequent routing updates
pose great challenges to the scalability of TE solutions.
Given that the network size has grown by 10× in the last
decade, it becomes computationally intractable for traditional
TE solutions to solve a routing optimization problem for large
networks (e.g., hundreds of nodes and links) within a limited
time budget [11]. As a result, such delayed routing decisions
may not be able to accommodate traffic changes in time, which
could lead to severe routing performance degradation.

Recently, emerging Machine Learning (ML) techniques
provide new opportunities for TE to address the above issues.
Some recent works focus on predicting TMs to adapt to future
traffic scenarios [12]–[16]. However, there is no guarantee to
bound the error between predicted TMs and real future TMs
in a small range. Given the inaccurately predicted TMs as
the input, it would be difficult for TE to make good routing
decisions for future traffic scenarios. Moreover, these TM
prediction-based TE solutions would suffer from high com-
putation overhead in large-scale networks, as they still need
to solve a routing optimization problem based on the predicted
TMs to derive routing strategies during online deployment.

Essentially, the main problem of the above solutions arises
from the fully coupled relationship between the accuracy of
predicted TMs and the performance of optimized routing
strategies, as well as the high complexity of routing optimiza-
tion. To solve the problem, one promising solution is to lever-
age ML techniques to directly predict good routing strategies
for future traffic scenarios. Compared to TM prediction-based
TE solutions, routing prediction is more decision-focused and
provides better scalability, as there is no need to perform real-979-8-3503-0322-3/23/$31.00 ©2023 IEEE

time routing optimization during online deployment.
Inspired by the above insight, we propose Roracle, a scal-

able learning-based TE solution that provides a good routing
strategy for a long sequence of future TMs to maximize
network performance in future TMs, mitigate network distur-
bance, and reduce TE computation overhead. The core concept
behind Roracle is to directly predict routing strategies for
future traffic scenarios using Supervised Learning (SL). Ror-
acle can directly learn from optimal routing for future traffic
scenarios during offline training, which eliminates the need to
explore a large solution space. To simplify routing prediction
and facilitate training and inference in large-scale networks,
Roracle leverages an oblivious routing [17], [18] algorithm to
compute and preconfigure a set of diverse forwarding paths
[6], and then simply predicts path split ratios for each source-
destination pair with less routing variables. Moreover, we
design a scalable Graph Neural Network (GNN) [19], [20]
architecture based on graph representation learning techniques,
where each module/layer is shareable and reused by each node
in parallel. We compare Roracle with existing TE solutions
through simulations on real-world network topologies and
traffic traces. Evaluation results show that Roracle outperforms
existing TE solutions in future traffic scenarios by at most 36%
in terms of worst-case MLU ratio, and also achieves good
scalability with at least 71× speedup over the most efficient
baseline in large-scale networks.

The contributions of this paper are summarized as follows:
• We propose a learning-based TE called Roracle to predict

good routing strategies for future unknown traffic scenar-
ios with mitigated disturbance and good scalability.

• We customize a scalable neural network architecture
based on GNNs to greatly accelerate training and infer-
ence processes.

• Evaluation results show that Roracle outperforms existing
TE solutions in future traffic scenarios with quick routing
inference in large-scale networks.

The rest of the paper is organized as follows. In Section
II, we discuss existing problems and challenges. Section III
provides an overview of Roracle. Section IV details Roracle’s
design. Section V explains implementation details. We eval-
uate the performance of Roracle in Section VI. Section VII
lists related work, and Section VIII concludes this paper.

II. PROBLEM STATEMENT AND CHALLENGES

A. Limitation of Existing TE Solutions

Traditional TE usually solves a routing optimization prob-
lem based on the network topology and a recently measured
TM that records the average traffic demand volume of all
source-destination pairs in the last time interval. Given a
capacitated network, the task of TE optimization is to solve
for optimal routing under multiple constraints to minimize the
MLU in the network, thereby achieving good load balancing
performance and reducing congestion probability. Here, MLU
represents the utilization of the most congested link in the
network, where link utilization is defined as the ratio of the
traffic load on the link over the link capacity. This routing

t+1 t+2 t+3 t+4 t+5
Future Time Step

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
ve

ra
ge

 M
L

U
 R

at
io

Fig. 1. Load balancing performance degradation in the future time period
with traditional TE. The error bars span from the average value to the 5th
and 95th percentile values achieved in each future time step.

optimization problem is known as the Multi-Commodity Flow
(MCF) problem [21], which can be formulated as a Linear
Program (LP).

Since future demands cannot be obtained in advance, TE
can only optimize routing based on historical traffic demands,
which will inevitably result in a stale routing that degrades
network performance in future traffic scenarios. To evaluate
the impact of the mismatch between stale routing strategies
and future TMs, we conduct a series of simulation experiments
based on real TMs from the large-scale BRAIN network with
161 nodes and 332 links [22], [23]. Similar to the settings of
traditional TE, the routing is periodically optimized and up-
dated every 5 minutes by solving an MCF problem [21], where
the input is the currently measured 5-minute TM that records
the average traffic demand volume in the last 5 minutes.
Then, the computed routing is applied in the future 5-minute
period for routing performance evaluation, including five fine-
grained 1-minute future TMs (from TMt+1 to TMt+5). For
comparison, we also evaluate the optimal routing for each real
future TM that leads to the lowest possible MLU (which is
infeasible in practice) and use a performance metric called
MLU ratio to demonstrate routing performance degradation,
which is obtained by comparing the MLU of optimal routing
to that of stale routing (see Section V-B).

1) Routing performance degradation in future TMs: Fig. 1
shows the experiment result, which depicts the degradation of
the MLU ratio in each future time step of the future 5-minute
period. Given the stale routing strategies from traditional TE
solutions, we can observe that the network MLU ratio degrades
by more than 20% on average compared to optimal routing in
future TMs. In the worst-case scenarios, the MLU ratio could
be dramatically degraded by more than half, which reveals the
limitations of traditional TE in accommodating future traffic
fluctuations. Since the stale routing is optimized based on past
traffic demands, it is no longer effective when future traffic
scenarios are different from past traffic scenarios.

2) Limitations of frequent routing updates: Network opera-
tors may consider increasing the frequency of routing updates
(e.g., every minute) to improve network performance. How-
ever, frequent routing updates cannot fundamentally address
the above issue since the routing is still optimized based
on currently measured TMs without considering future traffic
scenarios. As shown in Fig. 1, the MLU degradation in the

TMt-(L-1) ... TMt-1 TMt TMt+1 TMt+2 ... TMt+L’

Input TMs Target TMs

Target routing for multi-TMs
(solved by LP)

Fig. 2. Target routing to be learned by routing prediction-based TE solutions.
Instead of predicting a long sequence of future TMs, these solutions directly
predict a routing to accommodate future traffic scenarios and accelerate TE
operations while mitigating network disturbance.

future 1-minute time step (i.e., TMt+1) is still significant
enough with more than 50% of MLU ratio degradation in
the corner cases, which confirms the limitations of frequent
routing updates. Moreover, frequent routing updates would in-
troduce significant network disturbance and service disruption.

3) Poor scalability in large networks: Traditional TE solu-
tions often encounter scalability issues due to the high com-
putation overhead of routing optimization. In our experiments,
it usually requires 7-8 minutes to solve an MCF routing
optimization problem [21] in the large-scale BRAIN network,
as later shown in Section VI-D. Obviously, such time overhead
has greatly exceeded the traditional 5-minute routing update
intervals, which results in a severe delay in TE’s reaction to
traffic changes. As shown in Fig. 1, routing performance grad-
ually degrades when the stale routing is applied for a longer
future time step (e.g. from TMt+1 to TMt+5), which reflects
the limitation of traditional TE solutions in terms of scalability
as well as the importance of fast routing computation.

B. Limitation of TM Prediction-based TE Solutions

One potential idea to address the above issues (1) and (2)
is to formulate and solve a multi-TMs routing optimization
problem using LP (details in Section IV-C), where these
given TMs should represent the future traffic scenarios to
avoid performance degradation caused by traffic fluctuations.
Unfortunately, future TMs are unknown beforehand during
online deployment. A straightforward solution is to predict
future TMs based on historically measured TMs [12], [14],
[16]. By capturing temporal and spatial relationships in real
TMs, the next future TM can be predicted based on historically
measured TMs. To reduce the frequency of routing updates
and mitigate network disturbance, it is also possible to predict
the next multiple future TMs for routing optimization with
a longer time interval. However, as we discussed in Section
I, TM prediction-based TE solutions are prone to prediction
errors due to the coupled relationship between TM prediction
accuracy and optimized routing performance. Moreover, these
methods cannot bypass the scalability issue (3) due to the
high computation overhead of solving a routing optimization
problem in large networks based on multiple predicted TMs.

C. Our Insight

Based on the above analysis, an effective TE solution should
achieve three key requirements: (1) providing a lookahead
routing that is capable of handling future TMs to avoid
network performance degradation; (2) being suitable for a long
sequence of TMs in a future period to prevent frequent routing

update and thus mitigate network disturbance; (3) achieving
good scalability with quick and efficient routing computation
to cope with traffic changes in large-scale networks.

To achieve these requirements, one promising solution is
to directly predict a good routing strategy for future traffic
scenarios based on historically measured TMs. Fig. 2 shows
the target routing strategy to be learned by ML. In this figure,
the “ground truth” data (target routing) is obtained by solving
a multi-TMs routing optimization problem for future TMs
using LP, which is feasible during the training stage since we
can construct training samples with historical TMs and future
TMs from a pre-collected training TM dataset. Even though
the computation overhead of multi-TMs routing optimization
might be unacceptable for real-time routing updates in large
networks, it is suitable to serve as the learning target during the
offline training process. Besides, such time-consuming routing
optimization can be omitted during online deployment since
the well-trained ML model can directly and quickly generate
routing strategies through neural network inference.

Given that the proposed routing prediction method can
provide a lookahead routing to accommodate future traffic
scenarios without frequent routing updates, requirements (1)
and (2) can be satisfied. Moreover, routing prediction is a
decision-focused approach that bypasses routing optimization
during online deployment, which also enables efficient routing
inference in large-scale networks to satisfy requirement (3).
Therefore, routing prediction can be considered a promising
paradigm to address the emerging needs of network operators.

D. Challenges

However, we still face some technical challenges when
designing a routing prediction framework.

1) How to reduce routing complexity: When predicting a
routing for a network topology with N nodes and E links,
the size of a prediction model’s output variables becomes
a big concern. Take explicit routing as an example, there
would be N × (N − 1) × E routing variables representing
the traffic split ratios for each source-destination pair on each
link. In the BRAIN network [22], [23] with N = 161 nodes
and E = 332 links, the total number of routing variables
would be 161 × 160 × 332 = 8552320. It is very difficult,
if not impossible, to accurately predict such a large number
of variables. Destination-based routing is an alternative, which
only requires (N − 1) × E routing variables due to the hop-
by-hop forwarding property. But, the probabilistic output of a
prediction model is not guaranteed to be a loop-free routing.

2) How to select ML technique: Reinforcement Learning
(RL) is a popular approach for designing scalable TE so-
lutions. However, there are two limitations in terms of the
training efficiency of RL-based methods. First, RL agents need
to interact with an environment to learn a good policy by
exploring different actions and receiving their corresponding
rewards. With N × (N − 1)×E routing variables, the action
space could be too large for RL agents to efficiently discover
a good routing policy in today’s large-scale networks. Second,
since routing variables are continuous numbers, RL methods

SDN Controller TE Solution
Roracle

A sequence of measured TMs
(e.g., every 5 TMs)

Predicted routing
(e.g., every 5 mins)

Network

Collect a TM
periodically
(e.g., 1 min)

Update path split ratios
(e.g., every 5 mins)

Network topology
connectivity matrix

Fig. 3. Overview of Roracle. Roracle predicts a routing strategy and updates
path split ratios periodically based on historically measured TMs.

for continuous action domain [24], [25] should be adopted to
output continuous variables. However, when the number of
output variables is relatively large, this type of RL method
could lead to slow and ineffective learning [26], [27].

3) How to design a scalable neural network architecture:
In our problem, the input consists of a sequence (e.g., L) of
N×N×L historical TMs and a N×N connectivity matrix of
the topology, and the output could be a N×(N−1)×E traffic
split ratio vector, i.e., a lookahead routing targeting multiple
future TMs. If we design a routing prediction framework with
traditional neural network architectures (e.g., fully connected
neural network or convolutional neural network), the predic-
tion model would exponentially expand as the number of nodes
N and links E increases. In today’s large-scale networks, the
high dimensional input and output of the prediction model
could create a large neural network that is difficult to train.

III. OVERVIEW

A. System Overview
To address the above challenges, we propose a learning-

based routing prediction framework called Roracle. Given
a sequence of historically measured TMs and a topology
connectivity matrix, Roracle predicts traffic split ratios for
each source-destination pair on multiple paths as a lookahead
routing strategy. To facilitate TE operations, Roracle can be in-
tegrated with emerging Software-Defined Networking (SDN)
techniques [28], which provides a global view of the network
and enables flexible deployment of routing policies. Fig. 3
illustrates an overview of Roracle, where traffic demands can
be measured by SDN switches and collected by an SDN
central controller periodically [29]. Once the SDN controller
assembles and accumulates a sufficient number of TMs (e.g.,
five 1-minute TMs in the last 5 minutes), these TMs would
be forwarded to Roracle along with the topology information.
Then, Roracle quickly predicts a routing based on these inputs,
which would be installed in the network by the SDN controller.

B. Main Techniques
We briefly introduce the main techniques we adopted in

Roracle to address the technical challenges in Section II-D.

Path-based Routing. We leverage an oblivious routing
[17], [18] algorithm to compute and preconfigure a set of
diverse forwarding paths for each source-destination pair and
then simply predict path split ratios. As a result, the number
of output variables dramatically decreases compared to that
of link-based routing. Given κ preconfigured paths for each
source-destination pair, the number of output variables is now
only N × (N − 1) × κ, where κ ≪ E. We choose 4 paths
(i.e., κ = 4) with the highest weights assigned by oblivious
routing to achieve a good tradeoff between performance and
complexity [6]. Since these paths are low stretch, diverse,
and optimized for load balancing [6], the distribution of path
forwarding entries across nodes becomes more even, which
can alleviate the path storage burden in large networks.

Supervised Learning. We train Roracle using SL instead
of RL to improve training efficiency. It is feasible to train a
prediction model using SL with the help of LP, although the
size of path split ratios is not small. As long as LP can pre-
compute the target routing for large networks in a reasonable
timescale during offline training, it would be sufficient for
Roracle to converge with low training overhead. Compared
to the slow and ineffective learning process of RL with trial
and error, SL can leverage LP to generate the target routing as
an expert solution (i.e., optimal multi-TMs routing for future
TMs), which can efficiently guide the learning process of the
routing prediction model to accelerate convergence.

Graph Neural Networks. Compared to traditional neu-
ral network architectures, GNNs offer unique advantages in
modeling graph-structured data, which is suitable for network
topologies since they can be represented as graphs. Based on
GNNs, we leverage graph representation learning techniques
to characterize the TMs and topology information into a
low-dimensional embedding space and then perform message
exchange between neighboring nodes. Among the variants of
GNNs, we choose Graph Attention Networks (GATs) [20]
to design the routing prediction model since GAT supports
flexible aggregation of neighboring features based on learnable
weights. The main advantage of the GNN-based prediction
model is that each module can be shared and reused by each
node in parallel with lower dimensional input and output,
which greatly improves training efficiency and reduces routing
inference time in large networks. Moreover, GNN can effi-
ciently capture the topology and demand information to make
adaptive and lookahead routing decisions.

IV. DESIGN

In this section, we explain the design of Roracle in detail,
including the GNN-based routing prediction model and the LP
formulation for generating target routing. Inspired by the graph
representation learning techniques [19], [20] and the attention
mechanism [20], [30], [31], we design an encoder to produce
embedding for each node in the network, and a decoder
to interpret path split ratios from each node’s embedding.
This encoder-decoder architecture can be viewed as the core
design of our GNN-based routing prediction model. Moreover,
we formulate a multi-TMs routing optimization problem to

LSTM
0 2.2 3.6 2.8

0 2.2 3.6 4.0

0 1.8 3.8 2.8

3.2 00 .1 4.9

6.2 3.9 00 2.4

3.2 1.6 5.6 0

0

2

1

3

0 2.1 3.2 4.0

3.2 0 4.1 6.1

6.2 3.9 0 0.8

3.2 1.6 5.6 0

0 2.2 3.6 4.3

3.2 0 4.1 5.2

6.2 3.9 0 1.1

3.2 1.6 5.6 0

0 2.2 3.6 4.3

0 2.2 3.6 4.9
0 2.2 3.6 6.13.2 0 4.1 5.2

0 2.2 3.6 2.4
0 2.2 3.6 0.86.2 3.9 0 1.1

0 2.2 3.6 0
0 2.2 3.6 03.2 1.6 5.6 0

MHA FF

0

2

1

3

0

2

1

3

✕ H

✕ L

...

...

...

...

...

FF 0↦1

0↦2

0↦3

Softm
ax

1↦0

1↦2

1↦3

2↦0

2↦1

2↦3

3↦0

3↦1

3↦2

Softm
ax

Softm
ax

Softm
ax

Traffic Matrices

Traffic Demands per Node

Encoder Decoder

Fig. 4. The GNN architecture of Roracle. During the encoding process, the initial node embeddings are computed using a shared LSTM layer and then
updated using H attention layers according to the topology connectivity matrix. After that, the decoder interprets the final node embedding as path split ratios
for corresponding source-destination pairs with a node-wise fully connected FF layer and a pair-wise softmax layer.

facilitate path-based routing with reduced routing complexity,
which is used to compute the target routing for future TMs
during training and guide the learning process of the routing
prediction model with SL.

A. Encoder

For each node i ∈ υ, the input of encoder xi ∈ RL×N

is a series of |τ | = L demands {Di,d
t , d ∈ υ, t ∈ τ}

originated from node i, where υ is the node set (|υ| = N).
To capture complex temporal features among the series of
demands, we apply a Long Short-Term Memory (LSTM) [32]
layer to compute an initial dh dimensional node embedding
h0
i (i ∈ υ), as shown in Fig. 4. We also provide spatial

information by adding Positional Encoding (PE) to the initial
node embedding h0

i to indicate the origin i of the series of
demands {Di.d

t }, where PE is calculated as a mix of sinusoidal
functions [31]. Then, the embedding of each node is updated
through message exchange with its neighboring nodes. The
embedding update module consists of a stack of H identical
attention layers [30], [31]. Each attention layer includes a
Multi-Head Attention (MHA) layer that exchanges messages
between neighboring nodes, and a node-wise fully connected
Feed-Forward (FF) layer for nonlinear transformation. We also
apply a skip connection [33] and layer normalization (LN) [34]
to each sub-layer to facilitate training.

Single Dot-Product Attention. Given a node i, the node
embedding hl

i (layer l ∈ {1, ...,H}) is obtained by aggregating
weighted messages from its neighboring nodes according to
the attention mechanism [30], [31]. The attention weight of
a message is determined by the compatibility function, i.e.,
the dot-product of the query qli ∈ Rdk of node i and the key
klj ∈ Rdk of node j, where qli and klj are obtained by projecting
the corresponding embedding vectors with parameter matrices
W l

Q ∈ Rdk×dh and W l
K ∈ Rdk×dh , respectively:

qli = W l
Qh

l−1
i , klj = W l

Khl−1
j . (1)

The scaled compatibility ul
i,j ∈ R is then calculated according

to the following equation:

ul
i,j =

{
(qli)

⊤klj/
√
dk if i is adjacent to j

−∞ otherwise.
(2)

The compatibility of non-adjacent nodes is set to −∞ to
prevent message exchange between these nodes. Note that each
node is self-adjacent to itself. According to the compatibility
ul
i,j , the attention weight ali,j is calculated using softmax:

ali,j =
eu

l
i,j∑N−1

n=0 eu
l
i,n

. (3)

Then, the node embedding hl−1
j received by node i is projected

with a parameter matrix W l
V ∈ Rdv×dh to obtain the value vj :

vlj = W l
V h

l−1
j . (4)

As a result, the embedding vector hl
i for node i is updated

according to the following equation:

hl
i =

N−1∑
n=0

ali,nv
l
n. (5)

Multi-Head Attention. To allow each node to jointly
exchange multiple types of messages with its neighboring
nodes [20], [30], [31], we employ multiple attention functions
in parallel, i.e., calculate Eq. (5) for M times with different
W l

Q, W l
K and W l

V , and set dk = dv = dh

M . For each attention
head m ∈ {1, ...,M}, the corresponding embedding vector is
updated according to the following equation:

hlm
i =

N−1∑
n=0

almi,nv
lm
n . (6)

Then, multiple hlm
i are projected back to the original dh di-

mensional vector hl
i using parameter matrices Wm

h ∈ Rdh×dv :

hl
i =

M∑
m=1

Wm
h hlm

i . (7)

After exchanging messages for H iterations, each node’s
final embedding hH

i would include the information of the
nodes that are H hops away. Therefore, H is set to the max
hops between any two nodes in the network to ensure that each
node can receive the information from the entire network.

B. Decoder
In Fig. 4, the decoder consists of a node-wise fully con-

nected FF layer and a pair-wise softmax layer. It interprets
each node’s final embedding vector hH

i (i ∈ {0, ..., N − 1})
outputted by the encoder as path split ratios {σi,d

p , p ∈

TABLE I
NETWORK TOPOLOGIES USED IN EVALUATION

Topology Nodes Links TM Interval
Abilene 12 30 5 minutes

CERNET 14 32 5 minutes
GÉANT 23 72 15 minutes

Sprintlink 44 166 Synthetic TMs
BRAIN 161 332 1 minute
BRITE 204 964 Synthetic TMs

{0, ..., κ − 1}} for the node pairs ⟨i, d⟩ (d ∈ {0, ..., N − 1})
with source i. Given the input hH

i , the output oi ∈ Rκ×N of
the node-wise fully connected FF layer is given below:

oi = WOh
H
i + bO, (8)

where WO ∈ Rκ×N×dh and bO ∈ Rκ×N . Then, a set of (κ×
N) values {ôi,dp } (d ∈ {0, ..., N−1}, i ̸= d, p ∈ {0, ..., κ−1})
is derived from oi. Each ôi,dp corresponds to a preconfigured
path of a source-destination pair ⟨i, d⟩. Since ⟨i, i⟩ is not a
valid pair, we do not derive ôi,ip . Note that there might be
less than κ preconfigured paths for some pairs. Thus, we set
ôi,dp = −∞ if p ̸∈ P i,d. After applying the pair-wise softmax
function, the final outputs of the decoder are given as follows:

σi,d
p =

eô
i,d
p∑κ−1

p′=0 e
ôi,d
p′

. (9)

Such outputs {σi,d
p } can be viewed as the inferred routing

decision from Roracle, i.e., the traffic split ratios for all source-
destination pairs on its corresponding preconfigured paths.

C. Target Routing

For training purposes, we generate input features from L
historical TMs in the training dataset and compute the optimal
path-based routing for the next L′ future TMs as the training
target with low computation overhead (see Fig. 2). The routing
optimization problem for target future TMs can be described as
follows. Given a topology G(υ, ε) with nodes υ and directed
links ε (|υ| = N, |ε| = E), a set of preconfigured paths
{P s,d} for each source-destination pair ⟨s, d⟩, and a sequence
of |τ ′| = L′ target future TMs {TMt, t ∈ τ ′}, our objective
is to obtain the optimal path split ratios {σ̄s,d

p , p ∈ P s,d}
for each source-destination pair ⟨s, d⟩, such that the average
load balancing performance among given TMs is maximized,
i.e., the average MLU

∑
t∈τ ′ Ut/L

′ is minimized, where Ut

is the MLU achieved on TMt (t ∈ τ ′). We omit the constant
|τ ′| = L′ for simplicity and formulate the above routing
problem as an optimization problem as follows.

minimize
∑
t∈τ ′

Ut (10a)

subject to σ̄s,d
p ≥ 0 p ∈ P s,d, s, d ∈ υ, s ̸= d (10b)∑

p∈P s,d

σ̄s,d
p = 1 s, d ∈ υ, s ̸= d (10c)∑

s,d∈υ
s̸=d

∑
p∈P s,d

δs,dp,i,j ·σ̄
s,d
p ·Ds,d

t = lt,i,j ⟨i, j⟩ ∈ ε, t ∈ τ ′ (10d)

lt,i,j ≤ ci,j · Ut ⟨i, j⟩ ∈ ε, t ∈ τ ′ (10e)

(10b) and (10c) mention that the split ratios σ̄s,d
p should

be non-negative and sum up to 1 for each source-destination

pair ⟨s, d⟩. (10d) represents the traffic load lt,i,j on link ⟨i, j⟩
under TMt, where Ds,d

t is the traffic demand from source s
to destination d in TMt, and δs,dp,i,j is a binary indicator that
equals 1 if link ⟨i, j⟩ belongs to the path p of the source-
destination pair ⟨s, d⟩; otherwise, δs,dp,i,j = 0. (10e) is the link
capacity utilization constraint for TMt, where ci,j stands for
the capacity of link ⟨i, j⟩. By solving problem (10) using LP
solvers, we can obtain the set of optimal path split ratios
{σ̄s,d

p }, which is the target routing that Roracle wants to learn.

V. IMPLEMENTATION

A. Training and Testing Setups

Several real-world network topologies are used in our
evaluation and the statistics are listed in Table I. There are
four networks with real measured TMs available, including
the Abilene, CERNET, GÉANT, and BRAIN networks. For
the Abilene network, the topology information and measured
TMs are available at [35], which are collected every 5 minutes
for 24 weeks. Similarly, the CERNET TMs are measured at 5-
minute intervals for 5 weeks, where the network topology and
real TMs are obtained from [36]. As for the GÉANT network,
the link capacities and costs are provided by [37], and the
measured TMs are available at [38], which are collected every
15 minutes for 17 weeks. For the large-scale BRAIN network
with 161 nodes and 332 links, the topology connectivity and
real TMs are provided in [22], [23], where the fine-grained
BRAIN TMs are measured at 1-minute intervals for a total of
7 days. We assign equal link costs and configure link capacities
based on the degrees of connected nodes [39]. If both degrees
< 4, we only configure 5 Gbps; otherwise, 10 Gbps.

For each of these four networks, we select TMs from the
first 80% of total weeks as our training/validation dataset
D, while the remaining 20% TMs are used as the test set
for evaluating Roracle. As previously depicted in Fig. 2, a
training sample is generated for every sequence of L + L′

TMs. The first L TMs is the input X ∈ RL×N×N of a
training sample, and the target T ∈ Rκ×N×(N−1) of a training
sample is calculated based on the later L′ TMs using LP (10).
We randomly shuffle the training samples constructed from
dataset D and select 80% of the samples as the training set
DT , while the remaining 20% samples are considered as a
standalone validation set DV , which is used for early stopping
to avoid overfitting [40]. Roracle is trained on DT with the
objective of minimizing the Mean Absolute Error (MAE) loss
between the predicted routing and the target routing using
stochastic gradient descent. When training is done, we evaluate
Roracle using the test set that is unseen during training. Given
a sequence of L TMs, we predict a routing strategy and
then apply it in the following L′ TMs. We repeat the above
procedure every L′ TMs until the last TM of the test set. In the
following experiments, we set L = L′ = 5 for all networks.

To further evaluate the generalization capability of Roracle
under different traffic variations, we introduce the Sprintlink
network and a large-scale synthetic network topology gener-
ated from BRITE [41]. The statistics of these two networks are
listed in Table I. The Sprintlink network is an Internet Service

TABLE II
PARAMETER SETTINGS FOR DYNAMIC AND STABLE TMS

Parameters Dynamic Stable
Hourly peak-to-mean ratio 1.5 1.05
Daily peak-to-mean ratio 5 1.1
Hourly spatial variance 1 1
Daily spatial variance 3 1.5

0 50 100 150 200
TM Index

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 D
em

an
d

Vo
lu

m
e Dynamic TMs Stable TMs

Fig. 5. Traffic variations of a source-destination pair in the Sprintlink network,
whose demand volume is normalized with its maximum value in the test set.

Provider (ISP) network collected by Rocketfuel [42] with
44 nodes and 166 links. The large-scale BRITE network is
generated as a 4×4 grid region-level topology with 204 nodes
and 964 links, which is suitable for scalability analysis. Since
the link cost settings are available for the Sprintlink network,
we follow the default settings in Cisco routers to infer link
capacities as the inverse of link costs. For the synthetic BRITE
network, both the link costs and capacities are configured in
a similar way as the BRAIN network. Given that real traffic
traces are not available for these two networks, we use the
Modulated Gravity Model (MGM) [43], [44] to generate a
series of spatiotemporal TMs that simulate the characteristics
of real-world traffic demands. Fig. 5 provides an example of
traffic variations in the Sprintlink network. By controlling the
MGM parameters in Table II, we generate 100 dynamic TMs
with large variations and 100 stable TMs with small variations
for both the training/validation set and the test set.

B. Performance Metric

In this paper, we aim to minimize the MLU to achieve good
load balancing. Thus, we use the MLU ratio Ū to evaluate the
performance of Roracle, which is defined as follows:

ŪRoracle = Uoptimal/URoracle, (11)
where Uoptimal is the MLU achieved by an optimal routing
that is obtained by solving the MCF problem using LP based
on exact future TMs. A higher MLU ratio indicates that the
performance of Roracle is closer to optimal performance.

C. Hyperparameters

For the routing prediction model, we set the embedding
dimension dh to 128 and the number of attention heads M to
8. For the FF sub-layer in each attention layer, the intermediate
layer dimension is set to 256. For the decoder, the output di-
mension of the FF layer equals N×κ, where N represents the
number of network nodes and κ is the number of preconfigured
paths (κ = 4). A constant learning rate α = 10−4 is used for
training, and the batch size is set to 512 for a large training
set and 64 for a small training set. Besides, we apply dropout
[45] with a rate of ρdrop = 0.1 and L2 regularization [46] with

regularization parameter λ = 0.001 to avoid overfitting. All
these hyperparameters are fixed throughout our experiments,
which works well on different topologies and traffic traces.

VI. EVALUATION

A series of simulation experiments are conducted using
real-world network topologies and traffic traces to evaluate
the performance of Roracle and demonstrate its advantage by
comparing it with the following baseline methods.

ACRNN [13]: Exploits an attention-based convolutional
recurrent neural network model to predict a sequence of L′

future TMs based on historically measured L TMs, and then
solves the multi-TMs routing optimization problem (10) based
on the predicted TMs, which is a state-of-the-art TE solution
that considers lookahead routing and multiple TM prediction.

SMORE [6]: Generates a set of paths using an oblivious
routing [17], [18] algorithm and solves a variation of the MCF
problem using LP to obtain the optimal path split ratios for a
given TM, which is a state-of-the-art centralized TE method
that achieves good tradeoffs between routing optimization
complexity and network performance.

MCF [21]: Formulates an MCF problem with the objective
of minimizing MLU to obtain fine-grained per-flow routing,
which is a traditional TE solution that achieves optimal
performance for a given TM with link-based routing.

Equal-Cost Multipath (ECMP) [47]: Distributes traffic
evenly among available next hops along the shortest paths,
which is widely adopted by network operators along with the
OSPF routing protocol. The link cost setting for each network
is shown in Section V-A.

For comparison, we also calculate the MLU ratio for the
baseline methods. ACRNN optimizes routing based on a
sequence of L′ predicted TMs and then applies the routing
on the sequence of L′ real future TMs. SMORE and MCF
optimize routing based on TMt and then apply the routing
on the subsequent TMs spanning from TMt+1 to TMt+L′ .
Roracle, ACRNN, SMORE, and MCF have the same routing
update frequency, while Roracle, ACRNN, and SMORE use
the same preconfigured paths. ECMP is a static method that
is not traffic-aware and does not require routing updates.

A. Performance Comparison in Future Traffic Scenarios

Fig. 6 illustrates the MLU ratio achieved by Roracle and
the baseline methods in the test set of the first three small
networks. From Fig. 6, we can observe that Roracle performs
the best among all schemes. Since SMORE and MCF can
achieve good performance in small networks under stable
traffic scenarios, the average performance improvement of
Roracle over SMORE and MCF is not very significant. How-
ever, the MLU ratios of SMORE and MCF could degrade
dramatically when traffic fluctuates dynamically. To emphasize
the comparison of MLU ratio in such extreme conditions,
we present a box plot in Fig. 7 with customized whiskers
and outliers to highlight the worst 5% scenarios. In the
Abilene network, the worst-case MLU ratios of SMORE and
MCF are only 36.6% and 26.8%, respectively, which leads

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MLU Ratio

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F
Roracle
ACRNN
SMORE
MCF
ECMP

(a) Abilene network.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
MLU Ratio

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

Roracle
ACRNN
SMORE
MCF
ECMP

(b) CERNET network.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MLU Ratio

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

Roracle
ACRNN
SMORE
MCF
ECMP

(c) GÉANT network.
Fig. 6. MLU ratio comparison in future unknown traffic scenarios of the three small networks. A higher MLU ratio indicates better performance.

Abilene CERNET GÉANT
Network Topology

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
L

U
 R

at
io

Roracle
ACRNN
SMORE

MCF
ECMP

Fig. 7. MLU ratio comparison with an emphasis on worst-case performance,
where the whiskers are customized as the highest & 5th percentile MLU
ratio. We use outliers to reflect the MLU ratios of different TE solutions
under extreme conditions (the worst 5% scenarios).

to severe network performance degradation. For the GÉANT
network, MCF only achieves a 23.5% MLU ratio in the
worst case, which is slightly better than ECMP. In contrast,
Roracle can provide lookahead routing strategies with the best
5th percentile/worst-case MLU ratio in all three networks to
prevent severe performance degradation. As shown in Fig. 7,
Roracle achieves at least 92.4% MLU ratio for 95% of future
TMs in the CERNET work with a worst-case performance of
78.1%, which demonstrates the strong generalization capabil-
ity of Roracle to adapt to future traffic scenarios. Compared to
traditional TE (e.g., SMORE and MCF), Roracle can achieve
at most 14.9% and 36% performance improvements in terms
of 5th percentile and worst-case MLU ratio, respectively.

As depicted in Figs. 6 and 7, the performance of ACRNN
is far from optimal. While Roracle, SMORE, and MCF can
achieve a median MLU ratio over 90%, ACRNN’s median
performance is less than 80% in the Abilene and GÉANT
networks. Moreover, the worst-case performance of ACRNN
could be worse than SMORE, even though SMORE is op-
timized for the current TM rather than future TMs. As the
prediction sequence becomes longer (i.e., 5 future TMs), the
TM prediction complexity would inevitably increase and lead
to performance degradation. In contrast, Roracle performs
consistently well in future unknown traffic scenarios. In the
GÉANT network, Roracle outperforms ACRNN by 33.4% in
terms of 5th percentile performance. This is because routing
prediction has a main advantage over TM prediction: regard-
less of the length of the prediction sequence, the routing
prediction complexity remains the same. Moreover, it turns out
that routing prediction is more decision-focused compared to

the two-step TM prediction + routing optimization approach.
As a result, Roracle is able to provide a good routing strategy
for a long sequence of future TMs with mitigated network
disturbance and service disruption.

B. Generalization to Different Traffic Variations

Fig. 8 shows the MLU ratio comparison of different TE so-
lutions on each future TM in the Sprintlink network, including
dynamic and stable traffic scenarios. During dynamic traffic
fluctuations, both SMORE and MCF experience severe perfor-
mance degradation, which reflects the limitation of traditional
TE solutions since they only rely on historically measured
TM to make routing decisions. With the prediction capability,
both Roracle and ACRNN can achieve good performance in
dynamic future traffic scenarios and outperform traditional TE
solutions. As for stable TMs, all TE solutions except ECMP
can achieve high MLU ratios as we expected. One interesting
observation is the slight performance degradation of Roracle
and ACRNN compared to SMORE in stable TMs, which might
be caused by prediction errors. Given that SMORE optimizes
routing based on the current TM, it might work well when
there are no significant future traffic variations. However, it is
worth noting that Roracle can consistently achieve close-to-
optimal performance in stable TMs and outperform SMORE
in dynamic TMs with an average MLU ratio of 94.1% in all
future traffic scenarios, which demonstrates the strong gener-
alization capability of Roracle over different traffic variations.

C. Scalability Analysis in Large Networks

To validate the scalability of Roracle, we evaluate all TE
solutions in two large-scale networks, including the BRAIN
network (161 nodes, 332 links) with highly dynamic real traffic
traces and the BRITE network (204 nodes, 964 links) with
dynamic/stable TMs. For routing performance comparison,
we assume that all TE solutions can compute an updated
routing in time to catch up with traffic changes without taking
computation overhead into account. In other words, the actual
performance of the baseline methods could be even worse in
realistic scenarios due to seriously delayed TE reactions. Since
MCF requires more than 20 hours for routing optimization in
the BRITE network, we omit it from the corresponding results.

Fig. 9 shows the comparison of different TE solutions in
future traffic scenarios of the two large networks. Given the
highly dynamic traffic patterns in the BRAIN network, the

0 50 100 150 200
TM Index

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
L

U
 R

at
io

 Dynamic TMs Stable TMs

Roracle
ACRNN
SMORE

MCF
ECMP

Fig. 8. MLU ratio comparison in the Sprintlink
network with different traffic variations. The first
100 TMs represent dynamic scenarios, and the
remaining 100 TMs are relatively stable.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MLU Ratio

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

Roracle
ACRNN
SMORE
MCF
ECMP

(a) BRAIN network (161 nodes, 332 links).

0 50 100 150 200
TM Index

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
L

U
 R

at
io

 Dynamic TMs Stable TMs

Roracle
ACRNN

SMORE
ECMP

(b) BRITE network (204 nodes, 964 links).
Fig. 9. MLU ratio comparison in the two large-scale networks. Due to scalability issues, MCF
is omitted from the results of the BRITE network. Note that the impact of high computation
overhead is not yet considered for performance comparison, which means the actual performance
of the baseline methods could be even worse with a seriously delayed TE reaction.

performance of SMORE and MCF degrades dramatically with
a worst-case MLU ratio of 28.9% and 30.3%, respectively.
ACRNN also suffers from severe performance degradation
with a 65.1% average MLU ratio. Compared to these baselines,
Roracle can better accommodate future traffic fluctuations in
the BRAIN network with up to 13.9% average performance
improvement and 13.3% worst-case performance improve-
ment. For the BRITE network, our observations are similar to
the Sprintlink network in Section VI-B. As shown in Fig. 9(b),
Roracle constantly achieves near-optimal performance under
different traffic variations. It also outperforms SMORE and
ACRNN in dynamic and stable future TMs, respectively.

In addition to routing performance comparison, it is essen-
tial to evaluate the computation overhead of different TE solu-
tions for scalability analysis in large networks. Fig. 10 shows
the LP solving time of the baseline methods in the two large-
scale networks. Unfortunately, these baseline methods cannot
compute an updated routing within a reasonable timescale dur-
ing online deployment. In the BRAIN network, MCF requires
an average of 7.2 minutes to optimize routing for a given TM,
which cannot fit into regular 5-minute routing update intervals.
Moreover, MCF cannot compute a routing for the BRITE
network within 20 hours. As we explained in Section II-D,
MCF needs to solve for a large number of N × (N − 1)×E
routing variables with N nodes and E links, which introduces
high routing computation complexity (considering E = 964 in
the BRITE network). By leveraging κ preconfigured paths for
each source-destination pair, SMORE and ACRNN only need
to solve for N × (N − 1)× κ routing variables with reduced
complexity (e.g., κ = 4), but it still requires an average of
43.4 seconds and 1.5 minutes for SMORE to compute a path-
based routing strategy in the BRAIN and BRITE networks,
respectively. Since ACRNN solves a path-based multi-TMs
routing optimization problem (10) based on multiple predicted
TMs, there are more constraints to be considered in the LP
problem (10) compared to the single TM-based SMORE,
which results in an average computation time of 3.5 minutes
and 7.8 minutes for ACRNN in the BRAIN and BRITE net-
works, respectively. Such a high routing computation overhead
will restrict timely routing updates of these baseline methods
and lead to potential performance degradation. In contrast,
Roracle can directly and quickly infer routing strategies in

0 200 400 600 800 1000 1200 1400
TM Index

0
50

100
150
200
250
300
350
400
450

L
P

So
lv

in
g

T
im

e
(s

ec
)

ACRNN
SMORE

MCF

(a) BRAIN network.

0 50 100 150 200
TM Index

0
50

100
150
200
250
300
350
400
450
500

L
P

So
lv

in
g

T
im

e
(s

ec
)

ACRNN SMORE

(b) BRITE network.
Fig. 10. Comparison of LP solving time among different baseline methods
in the two large-scale networks. In the BRITE network, MCF requires more
than 20 hours for routing optimization, which is omitted from the comparison.

these two large networks to avoid delay in TE operations (see
Section VI-D). Overall, Roracle achieves good scalability in
large networks with promising routing performance and low
computation overhead.

D. Overhead Analysis

In our evaluation, we use a Tesla V100 GPU to train
Roracle in a high-performance computing cluster. The training
time of Roracle depends on the size of the network topology
and TM dataset. For the large-scale BRAIN network (161
nodes, 332 links) with thousands of 1-minute fine-grained TMs
measured in one week, it takes 10.5 hours to train a Roracle
model for routing prediction. For the remaining networks with
smaller topology sizes or fewer training samples, we can train
a Roracle model in less than one hour. It is worth noting
that the above training time can be further reduced with a
more powerful hardware specification, and we do not retrain
the Roracle model since it can achieve good performance in
all future traffic scenarios. In practice, network operators can
consider retraining the model on a weekly basis or when traffic
patterns significantly change.

Once the training is done, we conduct simulation experi-
ments to evaluate the routing performance of Roracle and the
baselines in future traffic scenarios. Considering the resource
consumption of routing optimization caused by the baseline
methods in large-scale networks, we take Gurobi [48] as the
LP solver and test all TE solutions on a Linux server with a
10-core Intel 3.3 GHz CPU and 128 GB memory. Table III
shows the average running time of Roracle and the baseline
methods in all six networks (see Table I for topology size).

TABLE III
COMPUTATION OVERHEAD OF DIFFERENT TE SOLUTIONS

Topology Roracle ACRNN SMORE MCF Target LP
Abilene 50.7 ms 300.9 ms 65.1 ms 142.8 ms 300.5 ms

CERNET 71.8 ms 478.1 ms 102.8 ms 254.4 ms 475.8 ms
GÉANT 162.3 ms 1.3 s 277.4 ms 1.5 s 1.3 s

Sprintlink 376.4 ms 2.5 s 547.3 ms 5.6 s 2.5 s
BRAIN 612.8 ms 3.5 min 43.4 s 7.2 min 3.5 min
BRITE 1.1 s 7.8 min 1.5 min >20 h 7.8 min

For the first four small networks, the computation overhead of
all TE solutions is negligible. However, as the network size
increases to hundreds of nodes and links, we can observe a
severe delay in TE operations of the baseline methods, which
reveals their limitations on scalability. In contrast, Roracle can
achieve efficient routing inference in the large-scale BRAIN
and BRITE networks with an average running time of 618.2
ms and 1.1 s, respectively. Compared to the most efficient
baseline SMORE, Roracle can achieve a speedup of at least
71× in these two large networks. Moreover, it is feasible to
compute the target routing for Roracle’s training with Multi-
TMs routing optimization (10). As shown in Table III, it takes
an average of 3.5 minutes and 7.8 minutes to solve the target
LP (10) in the BRAIN and BRITE networks, respectively. By
leveraging powerful machines in an offline setting, we can
compute target routing strategies for multiple training samples
in parallel to accelerate the procedure and then apply them
for offline training. Thanks to the scalable GNN architecture
design, Roracle can quickly generate a lookahead routing
to accommodate future unknown traffic scenarios in today’s
large-scale networks with good scalability.

VII. RELATED WORK

In the early days, traditional TE solutions [3]–[5], [49] were
designed based on Interior Gateway Protocols (IGPs). For
instance, with OSPF [50] or IS-IS [51], routers can exchange
link state information to learn about the network topology and
then calculate the shortest paths to each destination according
to the link costs. If there are multiple next hops for a desti-
nation, routers split traffic evenly among them according to
the ECMP [47] split rule. These TE solutions aim to optimize
link costs to achieve good network performance with a given
TM, which has been proven to be NP-hard [4]. In [7], [8],
Multi-Protocol Label Switching (MPLS) is used to support
explicit routing that offers fine-grained traffic distribution
control for each source-destination pair, and the explicit routes
are obtained by solving an optimization problem with a given
input TM. However, all the above methods assume that the
traffic is stable and the routing optimized based on the input
TM would be effective for a long period.

The emerging SDN techniques provide new opportunities
for TE to improve network performance [28]. The control
plane of SDN generates flexible routing policies based on
its global view of the network and then installs these poli-
cies in the corresponding SDN switches in the network. TE
solutions implemented in the control plane [2], [6], [52]–
[54] obtain routing policies by formulating and solving a

routing optimization problem with single or multiple given
TM(s) and different constraints. For example, the scheme
in [52] considers a network with partially deployed SDN
switches to improve network utilization and reduce packet
loss by strategically placing the controller and SDN switches.
SOTE [53] focuses on minimizing the MLU in an SDN/OSPF
hybrid network. SMORE [6] generates a set of paths using an
oblivious routing [17], [18] algorithm and then dynamically
adapts sending rates of all flows for each TM according to
these preconfigured paths. Again, they make routing decisions
based on the input TM(s) and have to passively react to traffic
fluctuations by frequently updating the routing, which lacks
the prediction capability to accommodate traffic changes in
the future. Moreover, these TE solutions may suffer from
scalability issues due to the high computation overhead of
solving routing optimization problems in large networks.

TM prediction plays an important role in the realm of TE. In
recent years, quite a few neural network-based TM prediction
methods [12], [14]–[16] have been proposed. Given the high
prediction complexity, most of the existing works focus on
predicting the next single TM and are able to achieve state-
of-the-art results. In these methods, TM prediction is typically
modeled as a time-series prediction problem, which takes a
series of past TMs as the input and predicts the following TM.
By employing LSTM or Gated Recurrent Unit (GRU) [55]
to capture the intra-flow dependencies, the methods proposed
in [12], [15], [16] improve the accuracy of TM prediction.
Recently, Gao et al. [13] propose an Attention-based Convolu-
tional Recurrent Neural Network (ACRNN) to predict the next
multiple TMs by capturing both intra-flow dependencies and
inter-flow correlations in TMs. However, TM prediction-based
TE does not necessarily lead to promising routing performance
[13], [14] since the routing performance is prone to prediction
errors. Besides, these methods cannot circumvent scalability
issues since they need to perform routing optimization based
on predicted TMs with high computation overhead.

VIII. CONCLUSION

To avoid performance degradation on future TMs and accel-
erate routing decisions in large networks, we propose Roracle,
a scalable learning-based TE that predicts a good routing
strategy for a long sequence of future TMs, while the learning
is guided by the optimal solutions of LP problems using
SL. Our customized scalable GNN architecture has greatly
facilitated training and inference, which enables Roracle to
quickly infer routing decisions in today’s large-scale networks.
Extensive experiments show that Roracle outperforms existing
TE methods in future TMs with good scalability and mitigates
network disturbance with infrequent routing updates.

ACKNOWLEDGMENTS

This work was partially supported by the National Nat-
ural Science Foundation of China under Grant 62002019,
SongShan Laboratory Fund under Grant YYJC022022009,
and Zhejiang Lab Open Research Project under Grant
K2022QA0AB02.

REFERENCES

[1] Z. Guo, W. Chen, Y.-F. Liu, Y. Xu, and Z.-L. Zhang, “Joint switch up-
grade and controller deployment in hybrid software-defined networks,”
IEEE JSAC, vol. 37, no. 5, pp. 1012–1028, 2019.

[2] J. Zhang, K. Xi, and H. J. Chao, “Load balancing in ip networks
using generalized destination-based multipath routing,” IEEE/ACM ToN,
vol. 23, no. 6, pp. 1959–1969, 2015.

[3] J. Chu and C.-T. Lea, “Optimal link weights for ip-based networks
supporting hose-model vpns,” IEEE/ACM ToN, vol. 17, no. 3, pp. 778–
788, 2009.

[4] B. Fortz and M. Thorup, “Optimizing ospf/is-is weights in a changing
world,” IEEE JSAC, vol. 20, no. 4, pp. 756–767, 2002.

[5] K. Holmberg and D. Yuan, “Optimization of internet protocol network
design and routing,” Networks: An International Journal, vol. 43, no. 1,
pp. 39–53, 2004.

[6] P. Kumar et al., “Semi-oblivious traffic engineering: The road not taken,”
in USENIX NSDI’18, pp. 157–170.

[7] E. D. Osborne and A. Simha, Traffic engineering with MPLS. Cisco
Press, 2002.

[8] Y. Wang and Z. Wang, “Explicit routing algorithms for internet traffic
engineering,” in IEEE ICCCN’99, pp. 582–588.

[9] R. Carpa, M. D. de AssunçÃo, O. Glück, L. LefÈvre, and J.-C. Mignot,
“Evaluating the impact of sdn-induced frequent route changes on tcp
flows,” in CNSM’17, pp. 1–9.

[10] W. Reda et al., “Path persistence in the cloud: A study of the effects
of inter-region traffic engineering in a large cloud provider’s network,”
ACM SIGCOMM CCR, vol. 50, no. 2, pp. 11–23, 2020.

[11] F. Abuzaid, S. Kandula, B. Arzani, I. Menache, M. Zaharia, and P. Bailis,
“Contracting wide-area network topologies to solve flow problems
quickly.” in USENIX NSDI’21, pp. 175–200.

[12] A. Azzouni and G. Pujolle, “Neutm: A neural network-based framework
for traffic matrix prediction in sdn,” in NOMS’18, pp. 1–5.

[13] K. Gao et al., “Incorporating intra-flow dependencies and inter-flow
correlations for traffic matrix prediction,” in IEEE/ACM IWQoS’20, pp.
1–10.

[14] Z. Liu, Z. Wang, X. Yin, X. Shi, Y. Guo, and Y. Tian, “Traffic matrix
prediction based on deep learning for dynamic traffic engineering,” in
IEEE ISCC’19, pp. 1–7.

[15] S. Troia, R. Alvizu, Y. Zhou, G. Maier, and A. Pattavina, “Deep learning-
based traffic prediction for network optimization,” in ICTON’18, pp. 1–4.

[16] Q. Zhuo, Q. Li, H. Yan, and Y. Qi, “Long short-term memory neural
network for network traffic prediction,” in ISKE’17, pp. 1–6.

[17] H. Racke, “Minimizing congestion in general networks,” in IEEE
SFCS’02, pp. 43–52.

[18] H. Räcke, “Optimal hierarchical decompositions for congestion mini-
mization in networks,” in ACM STOC’08, p. 255–264.

[19] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” arXiv preprint arXiv:1706.02216, 2018.

[20] P. Veličković et al., “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2018.

[21] D. Mitra and K. G. Ramakrishnan, “A case study of multiservice,
multipriority traffic engineering design for data networks,” in GLOBE-
COM’99, vol. 1B, pp. 1077–1083.

[22] SNDlib. [Online]. Available: http://sndlib.zib.de/home.action
[23] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–

Survivable Network Design Library,” in INOC’07.
[24] T. P. Lillicrap et al., “Continuous control with deep reinforcement

learning,” arXiv preprint arXiv:1509.02971, 2015.
[25] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust

region policy optimization,” in ICML’15, pp. 1889–1897.
[26] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to

route,” in ACM HotNets’17, pp. 185–191.
[27] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,

“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM’18, pp. 1871–1879.

[28] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74,
2008.

[29] H. Xu, Z. Yu, C. Qian, X. Li, and Z. Liu, “Minimizing flow statistics
collection cost of sdn using wildcard requests,” in IEEE INFOCOM’17,
pp. 1–9.

[30] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” arXiv preprint arXiv:1803.08475, 2018.

[31] A. Vaswani et al., “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE/CVF CVPR’16, pp. 770–778.

[34] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[35] Yin Zhang’s Abilene TM. [Online]. Available:
https://www.cs.utexas.edu/~yzhang/research/AbileneTM

[36] B. Zhang, J. Bi, J. Wu, and F. Baker, “Cte: Cost-effective intra-domain
traffic engineering,” ACM SIGCOMM CCR, vol. 44, no. 4, pp. 115–116,
2014.

[37] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public in-
tradomain traffic matrices to the research community,” ACM SIGCOMM
CCR, vol. 36, no. 1, pp. 83–86, 2006.

[38] GÉANT. The TOTEM project. [Online]. Available:
https://totem.info.ucl.ac.be/dataset.html

[39] M. Ye, J. Zhang, Z. Guo, and H. J. Chao, “Federated traffic engineering
with supervised learning in multi-region networks,” in IEEE ICNP’21,
pp. 1–12.

[40] L. Prechelt, “Early stopping — but when?” in Neural Networks: Tricks
of the Trade: Second Edition. Springer, 2012, pp. 53–67.

[41] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to
universal topology generation,” in MASCOTS’01, pp. 346–353.

[42] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” in ACM SIGCOMM CCR, vol. 32, no. 4, 2002, pp.
133–145.

[43] P. Tune and M. Roughan, “Spatiotemporal traffic matrix synthesis,” ACM
SIGCOMM CCR, vol. 45, no. 4, pp. 579–592, 2015.

[44] TMgen: Traffic Matrix Generation Tool. [Online]. Available:
https://tmgen.readthedocs.io/en/latest/

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp.
1929–1958, 2014.

[46] A. Krogh and J. A. Hertz, “A simple weight decay can improve
generalization,” in NIPS’91, p. 950–957.

[47] D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast
Next-Hop Selection,” IETF RFC 2991, November 2000.

[48] Gurobi. [Online]. Available: https://www.gurobi.com/
[49] Ashwin Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal

traffic engineering solutions for current ospf/is-is networks,” in IEEE
INFOCOM’03, vol. 2, pp. 1167–1177.

[50] J. Moy, “OSPF Version 2,” IETF RFC 2328, April 1998.
[51] D. Oran, “OSI IS-IS Intra-domain Routing Protocol,” IETF RFC 1142,

February 1990.
[52] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in

software defined networks,” in IEEE INFOCOM’13, pp. 2211–2219.
[53] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in

sdn/ospf hybrid network,” in IEEE ICNP’14, pp. 563–568.
[54] J. Zhang, K. Xi, M. Luo, and H. J. Chao, “Dynamic hybrid rout-

ing: Achieve load balancing for changing traffic demands,” in IEEE
IWQoS’14, pp. 105–110.

[55] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

